Discriminative maximum entropy language model for speech recognition
نویسندگان
چکیده
This paper presents a new discriminative language model based on the whole-sentence maximum entropy (ME) framework. In the proposed discriminative ME (DME) model, we exploit an integrated linguistic and acoustic model, which properly incorporates the features from n-gram model and acoustic log likelihoods of target and competing models. Through the constrained optimization of integrated model, we estimate DME language model for speech recognition. Attractively, we illustrate the relation between DME estimation and the maximum mutual information (MMI) estimation for language modeling. It is interesting to find that using the sentence-level log likelihood ratios of competing and target sentences as the acoustic features for ME language modeling is equivalent to performing MMI discriminative language modeling. In the experiments on speech recognition, we show that DME model achieved lower word error rate compared to conventional ME model.
منابع مشابه
A comparative study on maximum entropy and discriminative training for acoustic modeling in automatic speech recognition
While Maximum Entropy (ME) based learning procedures have been successfully applied to text based natural language processing, there are only little investigations on using ME for acoustic modeling in automatic speech recognition. In this paper we show that the well known Generalized Iterative Scaling (GIS) algorithm can be used as an alternative method to discriminatively train the parameters ...
متن کاملA Lightweight on-the-fly Capitalization System for Automatic Speech Recognition
This paper describes a lightweight method for capitalizing speech transcriptions. Several resources were used, including a lexicon, newspaper written corpora and speech transcriptions. Different approaches were tested both generative and discriminative: finite state transducers, automatically built from Language Models; and maximum entropy models. Evaluation results are presented both for writt...
متن کاملAutomatic Recovery of Punctuation Marks and Capitalization Information for Iberian Languages
This paper shows experimental results concerning automatic enrichment of the speech recognition output with punctuation marks and capitalization information. The two tasks are treated as two classification problems, using a maximum entropy modeling approach. The approach is language independent as reinforced by experiments performed on Portuguese and Spanish Broadcast News corpora. The discrimi...
متن کاملSpeech utterance classification
The paper presents a series of experiments on speech utterance classification performed on the ATIS corpus. We compare the performance of n-gram classifiers with that of Naive Bayes and maximum entropy classifiers. The n-gram classifiers have the advantage that one can use a single pass system (concurrent speech recognition and classification) whereas for Naive Bayes or maximum entropy classifi...
متن کاملDiscriminative model combination
Discriminative model combination is a new approach in the field of automatic speech recognition, which aims at an optimal integration of all given (acoustic and language) models into one log-linear posterior probability distribution. As opposed to the maximum entropy approach, the coefficients of the log-linear combination are optimized on training samples using discriminative methods to obtain...
متن کامل